

Triangles

Exercise: 7.1 (Page No: 118)

1. In quadrilateral ACBD, $AC = AD$ and AB bisects $\angle A$ (see Fig. 7.16). Show that $\Delta ABC \cong \Delta ABD$. What can you say about BC and BD?

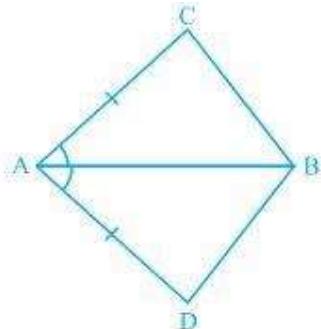


Fig. 7.16

Solution:

It is given that AC and AD are equal i.e. $AC = AD$ and the line segment AB bisects $\angle A$.

We will have to now prove that the two triangles ABC and ABD are similar i.e. $\Delta ABC \cong \Delta ABD$

Proof:

Consider the triangles ΔABC and ΔABD ,

(i) $AC = AD$ (It is given in the question)

(ii) $AB = AB$ (Common)

(iii) $\angle CAB = \angle DAB$ (Since AB is the bisector of angle A)

So, by SAS congruency criterion, $\Delta ABC \cong \Delta ABD$.

For the 2nd part of the question, BC and BD are of equal lengths by the rule of C.P.C.T.

2. ABCD is a quadrilateral in which $AD = BC$ and $\angle DAB = \angle CBA$ (see Fig. 7.17). Prove that

- (i) $\Delta ABD \cong \Delta BAC$
- (ii) $BD = AC$
- (iii) $\angle ABD = \angle BAC$.

Solution:

The given parameters from the questions are $\angle DAB = \angle CBA$ and $AD = BC$.

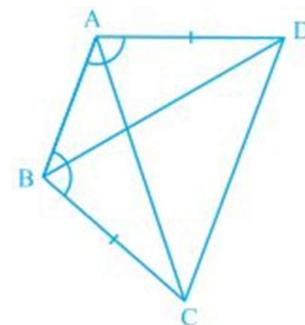


Fig. 7.17

(i) ΔABD and ΔBAC are similar by SAS congruency as $AB = BA$ (It is the common arm)

$\angle DAB = \angle CBA$ and $AD = BC$ (These are given in the question)

So, triangles ABD and BAC are similar i.e. $\Delta ABD \cong \Delta BAC$. (Hence proved).

(ii) It is now known that $\Delta ABD \cong \Delta BAC$ so, $BD = AC$ (by the rule of CPCT).

(iii) Since $\Delta ABD \cong \Delta BAC$ so, Angles $\angle ABD = \angle BAC$ (by the rule of CPCT).

3. AD and BC are equal perpendiculars to a line segment AB (see Fig. 7.18). Show that CD bisects AB.

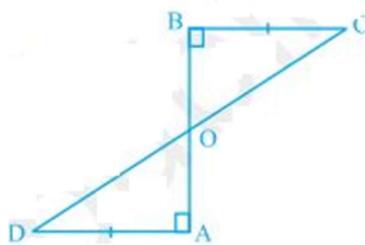


Fig. 7.18

Solution:

It is given that AD and BC are two equal perpendiculars to AB .

We will have to prove that **CD is the bisector of AB**

Now,

Triangles ΔAOD and ΔBOC are similar by AAS congruency since:

- (i) $\angle A = \angle B$ (They are perpendiculars)
- (ii) $AD = BC$ (As given in the question)
- (iii) $\angle AOD = \angle BOC$ (They are vertically opposite angles)

$\therefore \Delta AOD \cong \Delta BOC$.

So, $AO = OB$ (by the rule of CPCT).

Thus, CD bisects AB (Hence proved).

4. l and m are two parallel lines intersected by another pair of parallel lines p and q (see Fig. 7.19). Show that $\Delta ABC \cong \Delta CDA$.

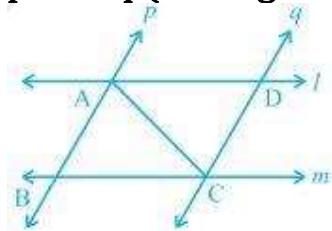


Fig. 7.19

Solution:

It is given that $p \parallel q$ and $l \parallel m$

To prove:

Triangles ABC and CDA are similar i.e. $\Delta ABC \cong \Delta CDA$

Proof:

Consider the ΔABC and ΔCDA ,

- (i) $\angle BCA = \angle DAC$ and $\angle BAC = \angle DCA$ Since they are alternate interior angles
- (ii) $AC = CA$ as it is the common arm

So, by ASA congruency criterion, $\Delta ABC \cong \Delta CDA$.

5. Line l is the bisector of an angle $\angle A$ and B is any point on l . BP and BQ are perpendiculars from B to the arms of $\angle A$ (see Fig. 7.20). Show that:

- (i) $\Delta APB \cong \Delta AQB$
- (ii) $BP = BQ$ or B is equidistant from the arms of $\angle A$.

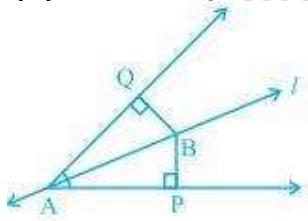


Fig. 7.20

Solution:

It is given that the line "l" is the bisector of angle $\angle A$ and the line segments BP and BQ are perpendiculars drawn from l .

- (i) ΔAPB and ΔAQB are similar by AAS congruency because:

$\angle P = \angle Q$ (They are the two right angles)

$AB = AB$ (It is the common arm)

$\angle BAP = \angle BAQ$ (As line l is the bisector of angle A)

So, $\Delta APB \cong \Delta AQB$.

(ii) By the rule of CPCT, $BP = BQ$. So, it can be said the point B is equidistant from the arms of $\angle A$.

6. In Fig. 7.21, $AC = AE$, $AB = AD$ and $\angle BAD = \angle EAC$. Show that $BC = DE$.

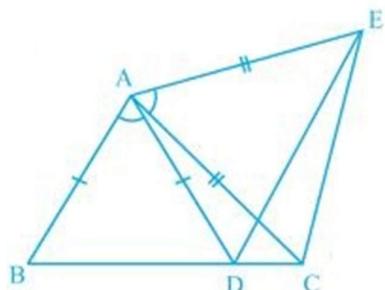


Fig. 7.21

Solution:

It is given in the question that $AB = AD$, $AC = AE$, and $\angle BAD = \angle EAC$

To prove:

The line segment BC and DE are similar i.e. $BC = DE$

Proof:

We know that $\angle BAD = \angle EAC$

Now, by adding $\angle DAC$ on both sides we get,

$$\angle BAD + \angle DAC = \angle EAC + \angle DAC$$

This implies, $\angle BAC = \angle EAD$

Now, ΔABC and ΔADE are similar by SAS congruency since:

(i) $AC = AE$ (As given in the question)

(ii) $\angle BAC = \angle EAD$

(iii) $AB = AD$ (It is also given in the question)

\therefore Triangles ABC and ADE are similar i.e. $\Delta ABC \cong \Delta ADE$.

So, by the rule of CPCT, it can be said that $BC = DE$.

7. AB is a line segment and P is its mid-point. D and E are points on the same side of AB such that $\angle BAD = \angle ABE$ and $\angle EPA = \angle DPB$ (see Fig. 7.22). Show that

(i) $\Delta DAP \cong \Delta EBP$

(ii) $AD = BE$

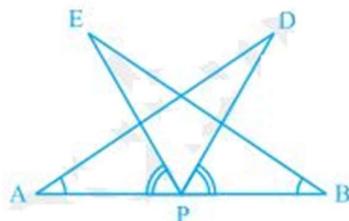


Fig. 7.22

Solutions:

In the question, it is given that P is the mid-point of line segment AB. Also, $\angle BAD = \angle ABE$ and $\angle EPA = \angle DPB$

(i) It is given that $\angle EPA = \angle DPB$

Now, add $\angle DPE$ on both sides,

$$\angle EPA + \angle DPE = \angle DPB + \angle DPE$$

This implies that angles DPA and EPB are equal i.e. $\angle DPA = \angle EPB$

Now, consider the triangles DAP and EBP.

$$\angle DPA = \angle EPB$$

$AP = BP$ (Since P is the mid-point of the line segment AB)

$\angle BAD = \angle ABE$ (As given in the question)

So, by ASA congruency, $\Delta DAP \cong \Delta EBP$.

(ii) By the rule of CPCT, $AD = BE$.

8. In right triangle ABC, right angled at C, M is the mid-point of hypotenuse AB. C is joined to M and produced to a point D such that $DM = CM$. Point D is joined to point B (see Fig. 7.23). Show that:

- (i) $\Delta AMC \cong \Delta BMD$
- (ii) $\angle DBC$ is a right angle.
- (iii) $\Delta DBC \cong \Delta ACB$
- (iv) $CM = \frac{1}{2} AB$

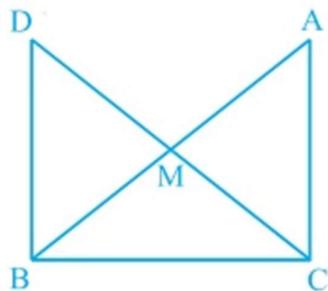


Fig. 7.23

Solution:

It is given that M is the mid-point of the line segment AB, $\angle C = 90^\circ$, and $DM = CM$

(i) Consider the triangles ΔAMC and ΔBMD :

$AM = BM$ (Since M is the mid-point)

$CM = DM$ (Given in the question)

$\angle CMA = \angle DMB$ (They are vertically opposite angles)

So, by **SAS congruency criterion**, $\Delta AMC \cong \Delta BMD$.

(ii) $\angle ACM = \angle BDM$ (by CPCT)

$\therefore AC \parallel BD$ as alternate interior angles are equal.

Now, $\angle ACB + \angle DBC = 180^\circ$ (Since they are co-interiors angles)

$$\Rightarrow 90^\circ + \angle B = 180^\circ$$

$$\therefore \angle DBC = 90^\circ$$

(iii) In ΔDBC and ΔACB ,

$BC = CB$ (Common side)

$\angle ACB = \angle DBC$ (They are right angles)

$DB = AC$ (by CPCT)

So, $\Delta DBC \cong \Delta ACB$ by **SAS congruency**.

(iv) $DC = AB$ (Since $\Delta DBC \cong \Delta ACB$)

$\Rightarrow DM = CM = AM = BM$ (Since M the is mid-point)

So, $DM + CM = BM + AM$

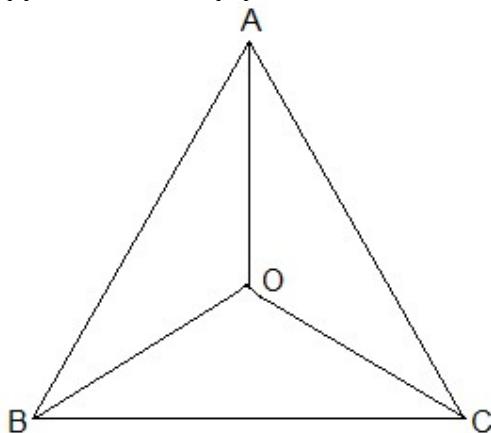
Hence, $CM + CM = AB$

$$\Rightarrow CM = (\frac{1}{2}) AB$$

Exercise: 7.2 (Page No: 123)

1. In an isosceles triangle ABC, with $AB = AC$, the bisectors of $\angle B$ and $\angle C$ intersect each other at O. Join A to O. Show that:

(i) $OB = OC$ (ii) AO bisects $\angle A$



Solution:

Given:

$AB = AC$ and

the bisectors of $\angle B$ and $\angle C$ intersect each other at O

(i) Since ABC is an isosceles with $AB = AC$,

$\angle B = \angle C$

$\frac{1}{2} \angle B = \frac{1}{2} \angle C$

$\Rightarrow \angle OBC = \angle OCB$ (Angle bisectors)

$\therefore OB = OC$ (Side opposite to the equal angles are equal.)

(ii) In ΔAOB and ΔAOC ,

$AB = AC$ (Given in the question)

$AO = AO$ (Common arm)

$OB = OC$ (As Proved Already)

So, $\Delta AOB \cong \Delta AOC$ by SSS congruence condition.

$\angle BAO = \angle CAO$ (by CPCT)

Thus, AO bisects $\angle A$.

2. In ΔABC , AD is the perpendicular bisector of BC (see Fig. 7.30). Show that ΔABC is an isosceles triangle in which $AB = AC$.

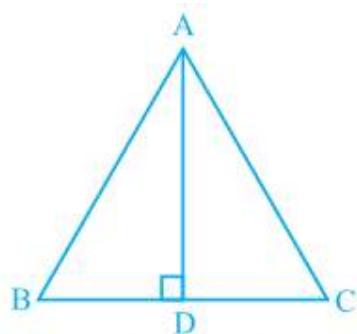


Fig. 7.30

Solution:It is given that AD is the perpendicular bisector of BC **To prove:**

$$AB = AC$$

Proof:In $\triangle ADB$ and $\triangle ADC$,

$$AD = AD \text{ (It is the Common arm)}$$

$$\angle ADB = \angle ADC$$

$$BD = CD \text{ (Since } AD \text{ is the perpendicular bisector)}$$

So, $\triangle ADB \cong \triangle ADC$ by **SAS congruency criterion**.

Thus,

$$AB = AC \text{ (by CPCT)}$$

3. **ABC** is an isosceles triangle in which altitudes BE and CF are drawn to equal sides AC and AB respectively (see Fig. 7.31). Show that these altitudes are equal.

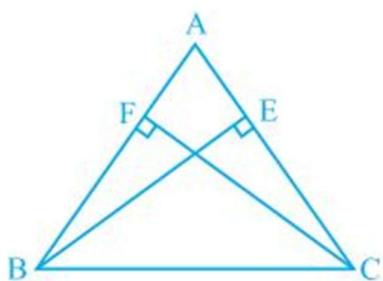


Fig. 7.31

Solution:**Given:**(i) BE and CF are altitudes.

(ii) $AC = AB$

To prove:

$BE = CF$

Proof:

Triangles ΔAEB and ΔAFC are similar by AAS congruency since

$\angle A = \angle A$ (It is the common arm)

$\angle AEB = \angle AFC$ (They are right angles)

$AB = AC$ (Given in the question)

$\therefore \Delta AEB \cong \Delta AFC$ and so, $BE = CF$ (by CPCT).

4. ABC is a triangle in which altitudes BE and CF to sides AC and AB are equal (see Fig. 7.32). Show that

(i) $\Delta ABE \cong \Delta ACF$

(ii) $AB = AC$, i.e., ABC is an isosceles triangle.

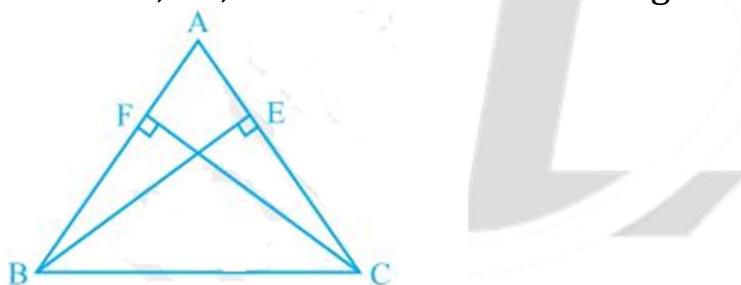


Fig. 7.32

Solution:

It is given that $BE = CF$

(i) In ΔABE and ΔACF ,

$\angle A = \angle A$ (It is the common angle)

$\angle AEB = \angle AFC$ (They are right angles)

$BE = CF$ (Given in the question)

$\therefore \Delta ABE \cong \Delta ACF$ by AAS congruency condition.

(ii) $AB = AC$ by CPCT and so, ABC is an isosceles triangle.

5. ABC and DBC are two isosceles triangles on the same base BC (see Fig. 7.33). Show that $\angle ABD = \angle ACD$.

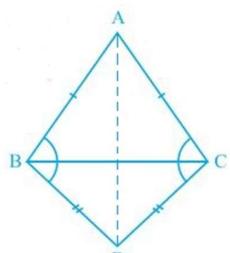


Fig. 7.33

Solution:

In the question, it is given that $\triangle ABC$ and $\triangle DBC$ are two isosceles triangles.

We will have to show that $\angle ABD = \angle ACD$

Proof:

Triangles $\triangle ABD$ and $\triangle ACD$ are similar by SSS congruency since $AD = AD$ (It is the common arm)

$AB = AC$ (Since $\triangle ABC$ is an isosceles triangle)

$BD = CD$ (Since $\triangle BCD$ is an isosceles triangle)

So, $\triangle ABD \cong \triangle ACD$.

$\therefore \angle ABD = \angle ACD$ by CPCT.

6. $\triangle ABC$ is an isosceles triangle in which $AB = AC$. Side BA is produced to D such that $AD = AB$ (see Fig. 7.34). Show that $\angle BCD$ is a right angle.

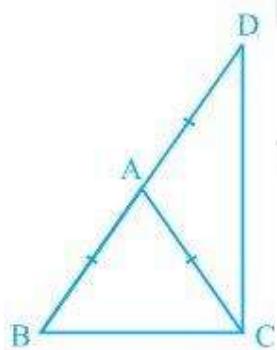


Fig. 7.34

Solution:

It is given that $AB = AC$ and $AD = AB$

We will have to now prove $\angle BCD$ is a right angle.

Proof:

Consider $\triangle ABC$,

$AB = AC$ (It is given in the question)

Also, $\angle ACB = \angle ABC$ (They are angles opposite to the equal sides and so, they are equal)

Now, consider $\triangle ACD$,

$AD = AB$

Also, $\angle ADC = \angle ACD$ (They are angles opposite to the equal sides and so, they are equal)

Now,

In $\triangle ABC$,

$$\angle CAB + \angle ACB + \angle ABC = 180^\circ$$

$$\text{So, } \angle CAB + 2\angle ACB = 180^\circ$$

$$\Rightarrow \angle CAB = 180^\circ - 2\angle ACB \text{ — (i)}$$

Similarly, in $\triangle ADC$,

$$\angle CAD = 180^\circ - 2\angle ACD \text{ — (ii)}$$

also,

$\angle CAB + \angle CAD = 180^\circ$ (BD is a straight line.)

Adding (i) and (ii) we get,

$$\angle CAB + \angle CAD = 180^\circ - 2\angle ACB + 180^\circ - 2\angle ACD$$

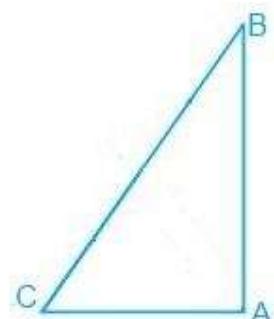
$$\Rightarrow 180^\circ = 360^\circ - 2\angle ACB - 2\angle ACD$$

$$\Rightarrow 2(\angle ACB + \angle ACD) = 180^\circ$$

$$\Rightarrow \angle BCD = 90^\circ$$

7. ABC is a right-angled triangle in which $\angle A = 90^\circ$ and $AB = AC$. Find $\angle B$ and $\angle C$.

Solution:



In the question, it is given that

$\angle A = 90^\circ$ and $AB = AC$

$AB = AC$

$\Rightarrow \angle B = \angle C$ (They are angles opposite to the equal sides and so, they are equal)

Now,

$\angle A + \angle B + \angle C = 180^\circ$ (Since the sum of the interior angles of the triangle)

$$\therefore 90^\circ + 2\angle B = 180^\circ$$

$$\Rightarrow 2\angle B = 90^\circ$$

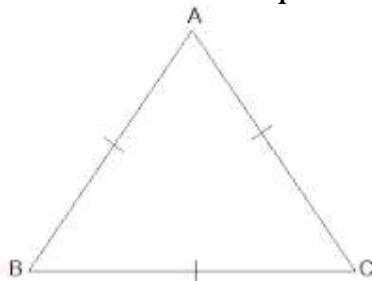
$$\Rightarrow \angle B = 45^\circ$$

$$\text{So, } \angle B = \angle C = 45^\circ$$

8. Show that the angles of an equilateral triangle are 60° each.

Solution:

Let ABC be an equilateral triangle as shown below:



Here, $BC = AC = AB$ (Since the length of all sides is same)

$\Rightarrow \angle A = \angle B = \angle C$ (Sides opposite to the equal angles are equal.)

Also, we know that

$$\angle A + \angle B + \angle C = 180^\circ$$

$$\Rightarrow 3\angle A = 180^\circ$$

$$\Rightarrow \angle A = 60^\circ$$

$$\therefore \angle A = \angle B = \angle C = 60^\circ$$

So, the angles of an equilateral triangle are always 60° each.

Exercise: 7.3 (Page No: 128)

1. ΔABC and ΔDBC are two isosceles triangles on the same base BC and vertices A and D are on the same side of BC (see Fig. 7.39). If AD is extended to intersect BC at P, show that

- (i) $\Delta ABD \cong \Delta ACD$
- (ii) $\Delta ABP \cong \Delta ACP$
- (iii) AP bisects $\angle A$ as well as $\angle D$.
- (iv) AP is the perpendicular bisector of BC.

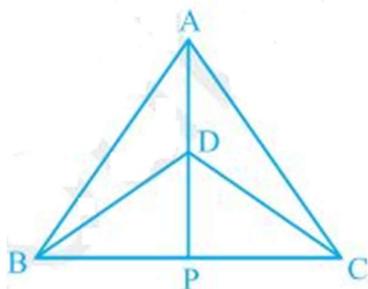


Fig. 7.39

Solution:

In the above question, it is given that $\triangle ABC$ and $\triangle DBC$ are two isosceles triangles.

(i) $\triangle ABD$ and $\triangle ACD$ are similar by SSS congruency because:

$AD = AD$ (It is the common arm)

$AB = AC$ (Since $\triangle ABC$ is isosceles)

$BD = CD$ (Since $\triangle DBC$ is isosceles)

$\therefore \triangle ABD \cong \triangle ACD$.

(ii) $\triangle ABP$ and $\triangle ACP$ are similar as:

$AP = AP$ (It is the common side)

$\angle PAB = \angle PAC$ (by CPCT since $\triangle ABD \cong \triangle ACD$)

$AB = AC$ (Since $\triangle ABC$ is isosceles)

So, $\triangle ABP \cong \triangle ACP$ by SAS congruency condition.

(iii) $\angle PAB = \angle PAC$ by CPCT as $\triangle ABD \cong \triangle ACD$.

AP bisects $\angle A$. — (i)

Also, $\triangle BPD$ and $\triangle CPD$ are similar by SSS congruency as

$PD = PD$ (It is the common side)

$BD = CD$ (Since $\triangle DBC$ is isosceles.)

$BP = CP$ (by CPCT as $\triangle ABP \cong \triangle ACP$)

So, $\triangle BPD \cong \triangle CPD$.

Thus, $\angle BDP = \angle CDP$ by CPCT. — (ii)

Now by comparing (i) and (ii) it can be said that AP bisects $\angle A$ as well as $\angle D$.

(iv) $\angle BPD = \angle CPD$ (by CPCT as $\triangle BPD \cong \triangle CPD$)

and $BP = CP$ — (i)

also,

$\angle BPD + \angle CPD = 180^\circ$ (Since BC is a straight line.)

$\Rightarrow 2\angle BPD = 180^\circ$

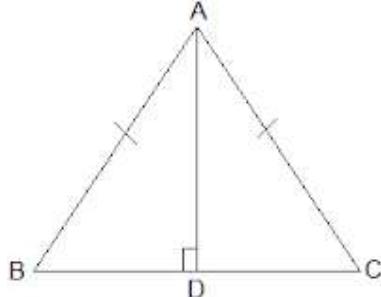
$$\Rightarrow \angle BPD = 90^\circ \text{ —(ii)}$$

Now, from equations (i) and (ii), it can be said that AP is the perpendicular bisector of BC.

2. AD is an altitude of an isosceles triangle ABC in which AB = AC. Show that
 (i) AD bisects BC (ii) AD bisects $\angle A$.

Solution:

It is given that AD is an altitude and AB = AC. The diagram is as follows:



(i) In ΔABD and ΔACD ,
 $\angle ADB = \angle ADC = 90^\circ$

$AB = AC$ (It is given in the question)

$AD = AD$ (Common arm)

$\therefore \Delta ABD \cong \Delta ACD$ by RHS congruence condition.

Now, by the rule of CPCT,

$BD = CD$.

So, AD bisects BC

(ii) Again, by the rule of CPCT, $\angle BAD = \angle CAD$

Hence, AD bisects $\angle A$.

3. Two sides AB and BC and median AM of one triangle ABC are respectively equal to sides PQ and QR and median PN of ΔPQR (see Fig. 7.40). Show that:

(i) $\Delta ABM \cong \Delta PQN$

(ii) $\Delta ABC \cong \Delta PQR$

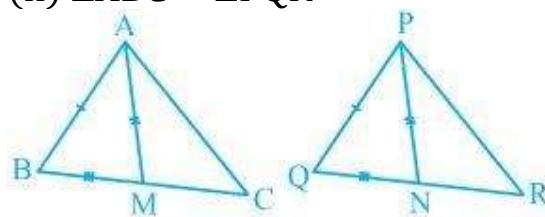


Fig. 7.40

Solution:

Given parameters are:

$AB = PQ$

$BC = QR$ and

$AM = PN$

(i) $\frac{1}{2} BC = BM$ and $\frac{1}{2} QR = QN$ (Since AM and PN are medians)

Also, $BC = QR$

So, $\frac{1}{2} BC = \frac{1}{2} QR$

$\Rightarrow BM = QN$

In ΔABM and ΔPQN ,

$AM = PN$ and $AB = PQ$ (As given in the question)

$BM = QN$ (Already proved)

$\therefore \Delta ABM \cong \Delta PQN$ by SSS congruency.

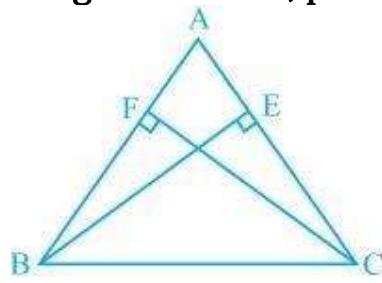
(ii) In ΔABC and ΔPQR ,

$AB = PQ$ and $BC = QR$ (As given in the question)

$\angle ABC = \angle PQR$ (by CPCT)

So, $\Delta ABC \cong \Delta PQR$ by SAS congruency.

4. BE and CF are two equal altitudes of a triangle ABC. Using RHS congruence rule, prove that the triangle ABC is isosceles.



Solution:

It is known that BE and CF are two equal altitudes.

Now, in ΔBEC and ΔCFB ,

$\angle BEC = \angle CFB = 90^\circ$ (Same Altitudes)

$BC = CB$ (Common side)

$BE = CF$ (Common side)

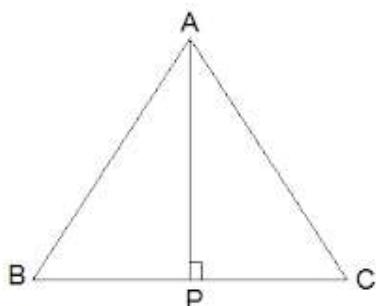
So, $\Delta BEC \cong \Delta CFB$ by RHS congruence criterion.

Also, $\angle C = \angle B$ (by CPCT)

Therefore, $AB = AC$ as sides opposite to the equal angles is always equal.

5. ABC is an isosceles triangle with $AB = AC$. Draw $AP \perp BC$ to show that $\angle B = \angle C$.

Solution:



In the question, it is given that $AB = AC$

Now, ΔABP and ΔACP are similar by RHS congruency as

$\angle APB = \angle APC = 90^\circ$ (AP is altitude)

$AB = AC$ (Given in the question)

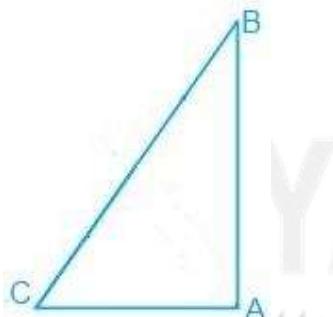
$AP = AP$ (Common side)

So, $\Delta ABP \cong \Delta ACP$.

$\therefore \angle B = \angle C$ (by CPCT)

Exercise: 7.4 (Page No: 132)

1. Show that in a right-angled triangle, the hypotenuse is the longest side.



Solution:

It is known that ABC is a triangle right angled at B.

We know that,

$$\angle A + \angle B + \angle C = 180^\circ$$

Now, if $\angle B + \angle C = 90^\circ$ then $\angle A$ has to be 90° .

Since A is the largest angle of the triangle, the side opposite to it must be the largest.

So, AB is the hypotenuse which will be the largest side of the above right-angled triangle i.e. ΔABC .

2. In Fig. 7.48, sides AB and AC of ΔABC are extended to points P and Q respectively. Also, $\angle PBC < \angle QCB$. Show that $AC > AB$.

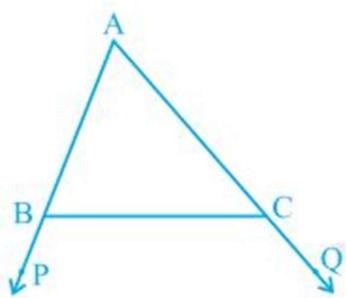


Fig. 7.48

Solution:

It is given that $\angle PBC < \angle QCB$

We know that $\angle ABC + \angle PBC = 180^\circ$

So, $\angle ABC = 180^\circ - \angle PBC$

Also,

$\angle ACB + \angle QCB = 180^\circ$

Therefore $\angle ACB = 180^\circ - \angle QCB$

Now, since $\angle PBC < \angle QCB$,

$\therefore \angle ABC > \angle ACB$

Hence, $AC > AB$ as sides opposite to the larger angle is always larger.

3. In Fig. 7.49, $\angle B < \angle A$ and $\angle C < \angle D$. Show that $AD < BC$.

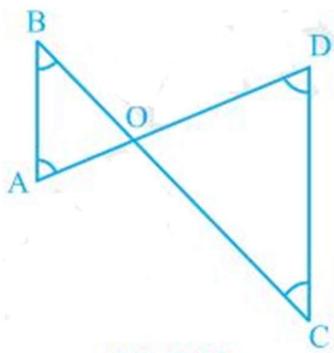


Fig. 7.49

Solution:

In the question, it is mentioned that angles B and angle C is smaller than angles A and D respectively i.e. $\angle B < \angle A$ and $\angle C < \angle D$.

Now,

Since the side opposite to the smaller angle is always smaller

$AO < BO$ — (i)

And $OD < OC$ — (ii)

By adding equation (i) and equation (ii) we get

$$AO+OD < BO + OC$$

$$\text{So, } AD < BC$$

4. AB and CD are respectively the smallest and longest sides of a quadrilateral ABCD (see Fig. 7.50).

Show that $\angle A > \angle C$ and $\angle B > \angle D$.

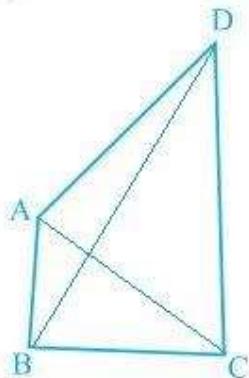


Fig. 7.50

Solution:

In $\triangle ABD$, we see that

$$AB < AD < BD$$

So, $\angle ADB < \angle ABD$ — (i) (Since angle opposite to longer side is always larger)

Now, in $\triangle BCD$,

$$BC < DC < BD$$

Hence, it can be concluded that

$$\angle BDC < \angle CBD$$
 — (ii)

Now, by adding equation (i) and equation (ii) we get,

$$\angle ADB + \angle BDC < \angle ABD + \angle CBD$$

$$\angle ADC < \angle ABC$$

$$\angle B > \angle D$$

Similarly, In triangle ABC,

$\angle ACB < \angle BAC$ — (iii) (Since the angle opposite to the longer side is always larger)

Now, In $\triangle ADC$,

$$\angle DCA < \angle DAC$$
 — (iv)

By adding equation (iii) and equation (iv) we get,

$$\angle ACB + \angle DCA < \angle BAC + \angle DAC$$

$$\Rightarrow \angle BCD < \angle BAD$$

$$\therefore \angle A > \angle C$$

5. In Fig 7.51, $PR > PQ$ and PS bisects $\angle QPR$. Prove that $\angle PSR > \angle PSQ$.

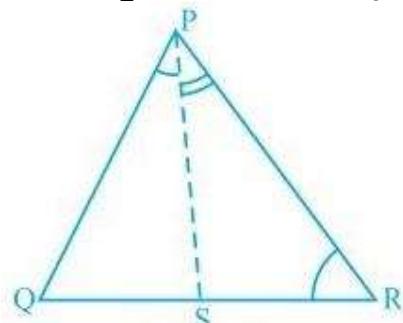


Fig. 7.51

Solution:

It is given that $PR > PQ$ and PS bisects $\angle QPR$

Now we will have to prove that angle PSR is smaller than PSQ i.e. $\angle PSR > \angle PSQ$

Proof:

$$\angle QPS = \angle RPS \text{ — (ii) (As PS bisects } \angle QPR\text{)}$$

$\angle PQR > \angle PRQ \text{ — (i) (Since } PR > PQ \text{ as angle opposite to the larger side is always larger)}$

$\angle PSR = \angle PQR + \angle QPS \text{ — (iii) (Since the exterior angle of a triangle equals to the sum of opposite interior angles)}$

$\angle PSQ = \angle PRQ + \angle RPS \text{ — (iv) (As the exterior angle of a triangle equals to the sum of opposite interior angles)}$

By adding (i) and (ii)

$$\angle PQR + \angle QPS > \angle PRQ + \angle RPS$$

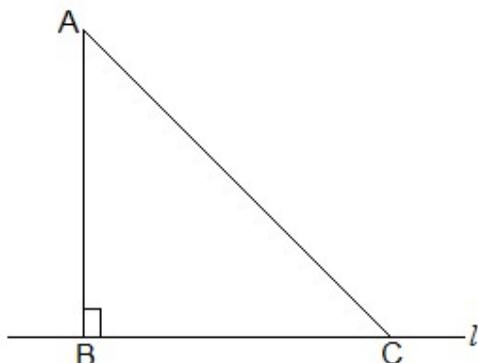
Thus, from (i), (ii), (iii) and (iv), we get

$$\angle PSR > \angle PSQ$$

6. Show that of all line segments drawn from a given point not on it, the perpendicular line segment is the shortest.

Solution:

First, let " l " be a line segment and "B" be a point lying on it. A line AB perpendicular to l is now drawn. Also, let C be any other point on l . The diagram will be as follows:



To prove:

$AB < AC$

Proof:

In ΔABC , $\angle B = 90^\circ$

Now, we know that

$\angle A + \angle B + \angle C = 180^\circ$

$\therefore \angle A + \angle C = 90^\circ$

Hence, $\angle C$ must be an acute angle which implies $\angle C < \angle B$

So, $AB < AC$ (As the side opposite to the larger angle is always larger)

LOYAL Education
<https://loyaleducation.org>